Dynamic response of biofilm to pipe surface and fluid velocity.
نویسندگان
چکیده
Biofouling in pipelines is a function of the inner roughness of the specific piping material that is used in distribution systems and the concomitant biofilm formation. To test the effect of velocity on the growth of biofilm, a Roto-Scope was designed and built to imitate different materials and flow conditions in potable water distribution systems. Biofilm formation was monitored using DAPI staining and the total number of viable bacteria. Increased velocity in the system resulted in a specific detaching velocity, where the formation of biofilm was limited. Most of the time these detaching velocities were not the highest velocities tested. The range of detaching velocities was between +/- 3 m x s(-1) and 4 m x s(-1). A flow velocity within this range would thus be ideal for achieving reduced biofilm growth in a distribution system.
منابع مشابه
Dynamical stability of cantilevered pipe conveying fluid in the presence of linear dynamic vibration absorber
When the velocity of fluid flow in a cantilevered pipe is successively increased, the system may become unstable and flutter instability would occur at a critical flow velocity. This paper is concerned with exploring the dynamical stability of a cantilevered fluid-conveying pipe with an additional linear dynamic vibration absorber (DVA) attachment. It is endeavoured to show that the stability o...
متن کاملOptimum Design of FGX-CNT-Reinforced Reddy Pipes Conveying Fluid Subjected to Moving Load
The harmony search algorithm is applied to the optimum designs of functionally graded (FG)-carbon nanotubes (CNTs)-reinforced pipes conveying fluid which are subjected to a moving load. The structure is modeled by the Reddy cylindrical shell theory, and the motion equations are derived by Hamilton's principle. The dynamic displacement of the system is derived based on the differential quadratur...
متن کامل3D Finite element modeling for Dynamic Behavior Evaluation of Marin Risers Due to VIV and Internal Flow
The complete 3D nonlinear dynamic problem of extensible, flexible risers conveying fluid is considered. For describing the dynamics of the system, the Newtonian derivation procedure is followed. The velocity field inside the pipe formulated using hydrostatic and Bernoulli equations. The hydrodynamic effects of external fluids are taken into consideration through the nonlinear drag forces in var...
متن کاملThe Influence of the Pipe’s Material and the Mass Flow Rate on the Pressure Drop and Velocity Variation During Pneumatic Conveying of Wheat Using Computational Fluid Dynamics
According to flexibility of pneumatic conveying systems with respect to other types of transmission systems, this system has wide application in industry and agriculture processes. One important application of this system is in the loading and unloading tankers and powdery bulk materials such as trucks carrying cement, plaster and sand. Conveying efficiency is associated with pressure, which in...
متن کاملThe Influence of the Pipe’s Material and the Mass Flow Rate on the Pressure Drop and Velocity Variation During Pneumatic Conveying of Wheat Using Computational Fluid Dynamics
According to flexibility of pneumatic conveying systems with respect to other types of transmission systems, this system has wide application in industry and agriculture processes. One important application of this system is in the loading and unloading tankers and powdery bulk materials such as trucks carrying cement, plaster and sand. Conveying efficiency is associated with pressure, which in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water science and technology : a journal of the International Association on Water Pollution Research
دوره 47 5 شماره
صفحات -
تاریخ انتشار 2003